3,460 research outputs found

    Long sandwich modules for photon veto detectors

    Full text link
    Long lead-scintillator sandwich modules developed for the BNL experiment KOPIO are described. The individual 4 m long module consists of 15 layers of 7 mm thick extruded scintillator and 15 layers of 1 mm lead absorber. Readout is implemented via WLS fibers glued into grooves in a scintillator with 7 mm spacing and viewed from both ends by the phototubes. Time resolution of 300 ps for cosmic MIPs was obtained. Light output stability monitored for 2 years shows no degradation beyond the measurement errors. A 4 m long C-bent sandwich module was also manufactured and tested.Comment: 14 pages, 13 figures, 1 tabl

    Helical vortex phase in the non-centrosymmetric CePt_3Si

    Full text link
    We consider the role of magnetic fields on the broken inversion superconductor CePt_3Si. We show that upper critical field for a field along the c-axis exhibits a much weaker paramagnetic effect than for a field applied perpendicular to the c-axis. The in-plane paramagnetic effect is strongly reduced by the appearance of helical structure in the order parameter. We find that to get good agreement between theory and recent experimental measurements of H_{c2}, this helical structure is required. We propose a Josephson junction experiment that can be used to detect this helical order. In particular, we predict that Josephson current will exhibit a magnetic interference pattern for a magnetic field applied perpendicular to the junction normal. We also discuss unusual magnetic effects associated with the helical order.Comment: 5 pages, 2 figures, Accepted as Phys Rev. Lette

    A note on the extension of the polar decomposition for the multidimensional Burgers equation

    Full text link
    It is shown that the generalizations to more than one space dimension of the pole decomposition for the Burgers equation with finite viscosity and no force are of the form u = -2 viscosity grad log P, where the P's are explicitly known algebraic (or trigonometric) polynomials in the space variables with polynomial (or exponential) dependence on time. Such solutions have polar singularities on complex algebraic varieties.Comment: 3 pages; minor formatting and typos corrected. Submitted to Phys. Rev. E (Rapid Comm.

    Beam test results of 3D fine-grained scintillator detector prototype for a T2K ND280 neutrino active target

    Full text link
    An upgrade of the long baseline neutrino experiment T2K near detector ND280 is currently being developed with the goal to reduce systematic uncertainties in the prediction of number of events at the far detector Super-Kamiokande. The upgrade program includes the design and construction of a new highly granular fully active scintillator detector with 3D WLS fiber readout as a neutrino target. The detector of about 200×180×60 cm3200\times 180\times 60~cm^3 in size and a mass of ∼\sim2.2~tons will be assembled from about 2×1062\times10^6 plastic scintillator cubes of 1×1×1 cm31\times1\times1~cm^3. Each cube is read out by three orthogonal Kuraray Y11 Wave Length Shifting (WLS) fibers threaded through the detector. A detector prototype made of 125 cubes was assembled and tested in a charged particle test beam at CERN in the fall of 2017. This paper presents the results obtained on the light yield and timing as well as on the optical cross-talk between the cubes.Comment: 5 pages, 8 figure

    Observation of vortex coalescence in the anisotropic spin-triplet superconductor Sr2_{2}RuO4_{4}

    Full text link
    We present direct imaging of magnetic flux structures in the anisotropic, spin-triplet superconductor Sr2_{2}RuO4_{4} using a scanning μ\muSQUID microscope. Individual quantized vortices were seen at low magnetic fields. Coalescing vortices forming flux domains were revealed at intermediate fields. Based on our observations we suggest that a mechanism intrinsic to the material stabilizes the flux domains against the repulsive vortex-vortex interaction. Topological defects like domain walls can provide this, implying proof for unconventional chiral superconductivity.Comment: submitted to PR

    Cooper Pairs with Broken Time-Reversal, Parity, and Spin-Rotational Symmetries in Singlet Type-II Superconductors

    Full text link
    We show that singlet superconductivity in the Abrikosov vortex phase is absolutely unstable with respect to the appearance of a chiral triplet component of a superconducting order parameter. This chiral component, p_x + i p_y, breaks time-reversal, parity, and spin rotational symmetries of the internal order parameter, responsible for a relative motion of two electrons in the Cooper pair. We demonstrate that the symmetry breaking Pauli paramagnetic effects can be tuned by a magnetic field strength and direction and can be made of the order of unity in organic and high-temperature layered superconductors.Comment: Submitted to Physical Review Letters on May 9th 200
    • …
    corecore